(x^2-10)+(4x+11)=180

Simple and best practice solution for (x^2-10)+(4x+11)=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x^2-10)+(4x+11)=180 equation:



(x^2-10)+(4x+11)=180
We move all terms to the left:
(x^2-10)+(4x+11)-(180)=0
We get rid of parentheses
x^2+4x-10+11-180=0
We add all the numbers together, and all the variables
x^2+4x-179=0
a = 1; b = 4; c = -179;
Δ = b2-4ac
Δ = 42-4·1·(-179)
Δ = 732
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{732}=\sqrt{4*183}=\sqrt{4}*\sqrt{183}=2\sqrt{183}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{183}}{2*1}=\frac{-4-2\sqrt{183}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{183}}{2*1}=\frac{-4+2\sqrt{183}}{2} $

See similar equations:

| 8x-63=x-63 | | 39(-6x+7)+4x=-7 | | 6x-20=x+50 | | X(6x-4)=(6x+3)(x-1) | | 8x-2-5-5x=8+6(x+2) | | 2x+10=x=1 | | 6x-25=x-20 | | 6x+4x–5=24+9x | | 9x-72=x+16 | | 3x=4=x+4 | | 4x+28=180,x | | 5x+16=x-32 | | 5x+36=x-40 | | 3x-4=x-20 | | 7x-48=x+30 | | 4x-30=x+21 | | 8x-42=x-56 | | 9x-(8x+3)=2x-31 | | 7y+22+6y-3=6(9+y)+14 | | 4x-30=x=+21 | | -b+10.35+14.8b=14.23+14.2b | | 8x-49=x-21 | | -2w-5=4w+2 | | 9+4n=7n+9 | | 1/4(3x16)+1/4x=51/3 | | 4x+24-x=+12 | | 18(5x0.3)=38(10.3-x) | | 7x-30=x-24 | | 6-5r-4=-4r+16 | | 10x-2x+60=10x+40 | | -4(x-1)=2(1-2x)-6 | | 1-9n=-8n+11 |

Equations solver categories